
Gaming Handheld

Audio Controller

Silas Wang
Electronic Product Design Fall 2025

1

Contents
1. Overview . ⁠3

2. User Interface . ⁠5

3. Challenges . ⁠6

3.1. Composite USB Devices . ⁠6

3.1.1. Steps . ⁠7

3.1.2. Final boards.txt Modification . ⁠8

3.1.3. Alternative: tinyUSB . ⁠10

3.2. Passing Function Arguments . ⁠11

3.2.1. Example . ⁠12

3.3. Display Optimization . ⁠13

3.3.1. Implementation . ⁠13

3.3.2. Using millis() . ⁠14

3.3.3. Framebuffers . ⁠15

3.4. Object Oriented Design . ⁠16

3.4.1. Overview . ⁠16

3.4.2. Design . ⁠17

3.4.2.1. Parameter Class . ⁠17

3.4.2.2. Behavior Class . ⁠19

3.4.2.3. Wrapper Class and Application . ⁠19

3.5. The Printed Circuit Board & Physical Components . ⁠20

3.6. The Ambitious NYU Student . ⁠21

4. Fabrication . ⁠22

4.1. Design Goals for Future Prototypes: . ⁠22

4.2. Inspirations . ⁠23

4.3. Rough Sketch . ⁠25

5. Planned Features . ⁠26

6. Materials List . ⁠27

6.1. Hardware . ⁠27

6.2. Software . ⁠28

2

1. Overview
At a high level, my Electronic Product Design prototype is a device that is capable of

controlling both a video game and audio equipment (be it, music hardware or

software).

You can technically write this device off as a MIDI controller, but this device has the

ability to implement any kind of communication protocol

(CV, MIDI, OSC, HID, etc.) and simulatneously control two devices that each require

a different protocol to communicate with it. You can think of it as the following

flowchart:

User Input Data Processing

Output (program 1)

Output (program 2)

where User Input outlines the User interacting with the device and its parameters,

Data Processing refers to the firmware witin the device, and Output refers to the

different devices (software or hardware) that it can control. The current version of

this prototype focuses on creating a device that can communicate with MIDI devices

and video games.

Future designs will align with the Y2K transparent-tech style heavily inspired by tech

companies like Nothing, and technology from the Y2K era. See Section 4 for more

information.

Handheld gaming controllers are popular choices for gaming due to their form factor

and convenience. Their integration with existing IP and the combination of hardware

and software optimization lead to a device powerful enough to run demanding game

titles whilst being light enough to carry around in a backpack. Some examples of

these include the Steam Deck, Nintendo Switch, and Lenovo Legion GO.

To my knowledge, there is little exploration for products that balance the “sound

design by playing video games” mantra. This prototype and the subsequent

documentation attempts to address this gap by thoroughly documenting what I have

learned whilst creating this project.

An image of the prototype and PCB can be found below:

3

https://store.steampowered.com/steamdeck
https://www.nintendo.com/us/gaming-systems/switch/
https://www.lenovo.com/us/en/p/handheld/legion-go/len106g0001

A video demonstration can be found here.

All code (test .ino files, classes, etc.) can be found on GitHub.

All parts and software used can be found at Section 6

4

https://youtu.be/W_0hcfEMy6c
https://github.com/sialboat/product-design-sound-controller

2. User Interface
The parameters on the user interface is modeled after gaming controllers such as the

Xbox controller or the PlayStation controller. Two joysticks, each with a select

button are utilized alongside two four-button arrays, one labeled DPAD and the other

XYAB respectively. In addition, the prototype board has the capacity to support two

trigger buttons, two analog triggers, and two “miscellaneous” buttons, akin to a

typical gaming controller.

Higher end gaming controllers utilize Hall-Effect Sensors, which are said to offer

higher precision, finer deadzones1, and a longer product lifespan. For the sake of this

documentation, we assume no differences.

Additionally, a few extra components are used. A gyroscope is used to track the

position and orientation of the prototype to offer a more expressive set of gestures

that can be translated as MIDI, and a DAC is utilized to write the digitized values

collected from sensors as voltage, so hardware music devices can also be controlled. A

2.2″ TFT ILI9341 display has also been used to provide a visual interface for the

firmware. The exact gyroscope and DAC I got from Adafruit is the LSM6DSOX

Gyroscope and MCP4728 DAC. Additionally, a switch is used to bypass the

Keyboard and Mouse, making it easy to set up MIDI CC parameters without

destroying a DAW project file. General usage would be

1. load a project file, DAW supporting MIDI-CC of choice

2. enable bypass switch

3. map parameters and hit record

4. open desired video game

5. play the video game

This project utilizes the Teensy 4.1 microcontroller. At the project’s current state,

values are read into sensors via analogRead() or digitalRead() function calls,

smoothed via a simple moving average filter to remove potential analog noise, then

translated into MIDI and HID data. In essence, we configure our Teensy

microcontroller to behave as both a MIDI controller and a keyboard/mouse pair.

Future iterations of the project will incoroporate some sort of data processing

software and a GUI for the display.

For more information on the design plans for the fabrication of the device, see

Section 4.

The PCB was designed in KiCad, inspired by Mason Mann, and printed by JLPCB.

1analog joysticks tend to drift / produce noisy values by nature of hardware and its interaction
with the world around it. This makes it difficult for firmware programmers to accurately determine
the minimum and maximum values of this sensor without setting a deadzone, a small range around
the joystick that is treated as its resting state.

5

https://en.wikipedia.org/wiki/Hall_effect_sensor
https://masonmann.online/electronics/meap/hardware/meap4c/

3. Challenges
Just like the many amazing peers who have taken Product Design with me in the Fall

of 2025, this project had a plethora of challenges that needed workarounds for the

product to get to its current iteration. This is thoroughly covered below:

3.1. Composite USB Devices

This was one of the core components of my project and arguably the sole reason why

this project works in the first place. The Arduino IDE allows users to define a “USB

Mode” under the Tools > USB Mode tab. For the Teensy 4.1, a plethora of USB Modes

are offered, ranging from Serial to 16-Channel MIDI to flight simulators. However, for

the goals that I wished to accomplish with the Teensy, there was no option within

this dropdown that allowed me to send USB, MIDI, and HID (Keyboard and Mouse)

at the same time.

For context, computers send messages that are solely comprised of zeros and ones.

This protocol is what determines the means in which these binary strings are

interpreted. After all, the main difference between MIDI and other digital

communication protocols lies within how different strings are interpreted2.

USB is inherently a Serial architecture. It sends information bit by bit in series.

When a computer powers on, a process within the Operating System runs a routine

that labels all connected devices and assigns each device a respective address through

a process called enumeration. One of the steps within this process is determining

which type of data the device wishes to transfer:

• Interrupts typically come from mice or keyboards and don’t send a lot of

information

• Bulk typically comes from printers, who receive large amounts of information at a

time and requires extra verification to check if the information is correct.

• Isochronous typically involves sending real time data and no error correction

(audio)

During enumeration, host machines like your computer look for USB Descriptors

within each USB device that is connected to the USB bus of a computer / USB

accepting device. Within these USB Descriptors lies all the information that the host

needs to properly communicate with the devices. So if we want our computer to think

our Teensy 4.1 is simultaneously a computer keyboard, a mouse, and a MIDI

controller at the same time, we must look to adjust the Teensy’s usb descriptors. We

can accomplish this by doing the following:

2as well as how the messages are formatted

6

3.1.1. Steps

1. Open Finder and navigate to Users/Library/Arduino15. There are a couple of ways

to find this folder, as it is hidden to users by default.

1. Command + Shift + G and copy-paste ~/Library/Arduino15

2. Command + Shift + . whilst in your user folder (Macintosh HD/Users/username-

here)

2. Navigate to the following folder: packages/teensy/hardware/avr/1.59.0. The entire

filepath should then be ~/Library/Arduino15/packages/teensy/hardware/

avr/1.59.0.

3. Open boards.txt and cores/teensy4/usb_desc.h using your favorite text editor.

we are halfway done.

4. We need to create a new menu interface for this USB device to show up in.

• In boards.txt, we must add the following lines, replacing customusbserial with

the name of the new USB Mode:

 teensy41.menu.usb.customusbserial = Custom USB Serial

 teensy41.menu.usb.customusbserial.build.usbtype = USB_CUSTOMUSBSERIAL

 teensy41.menu.usb.customusbserial.upload_port.usbtype = USB_CUSTOMUSBSERIAL

 teensy41.menu.usb.customusbserial.fake_serial = teensy_gateway

This project uses the Serial monitor (for debugging), MIDI, and HID, so I added the

following lines:

 teensy41.menu.usb.serialmidihid = Serial + MIDI + HID

 teensy41.menu.usb.serialmidihid.build.usbtype = USB_SERIAL_MIDI_HID

 teensy41.menu.usb.serialmidihid.upload_port.usbtype = USB_SERIAL_MIDI_HID

 teensy41.menu.usb.serialmidihid.fake_serial = teensy_gateway

After doing so, we should see the USB Mode appear in the Tools > USB Mode

dropdown.

5. We need to link the preexisting USB Descriptors to the USB mode we made for

the Arduino IDE.

• In usb_desc.h, we must add a USB Descriptor configuration that matches our

desired specifications. Notice that each USB Mode has their USB Descriptors to

be defined here. In particular, each USB Mode begins with a #elif

defined(USB_CUSTOMUSBSERIAL) and features a lot of #define lines. You may also

have noticed that there are a lot of comments within the beginning of the file

that explain a lot of what I will be writing in more depth. You can and should

reference that as well.

• Find a pre-defined USB Mode that is close enough to the specifications that

your desired USB Mode is trying to accomplish. Copy-paste and rename it to

whatever you renamed the .build.usbtype from the previous step.

• Find other pre-defined USB specifications that match what you are missing.

For this project, I accomplished this by creating an #elif

defined(USB_SERIAL_MIDI_HID) and copying the USB Serial + MIDI USB Mode to

start out with. I then added parts from the USB_SERIAL_HID configuration to ensure

7

that my Serial + MIDI + HID USB Mode has the adequate HID descriptors for the

custom USB Mode to properly function. That leaves me with the example below.

6. Endpoints.

• So far, our picture of how the Teensy communicates with a host has been pretty

clear, excpet for one crucial part: How exactly does the Teensy and the host

know where leave this information such that the other party picks it up? The

answer is Endpoints. Endpoints can be thought of as a rendezvous that both

the host and Teensy are aware of. A location where the Teensy knows will reach

the host, and visa versa. The Teensy has 8 bidirectional endpoints, indexed at

zero (0-7). Since each endpoint is bidirectional, each endpoint can be used for

both IN / TX (Teensy -> Host) and OUT / RX (Host -> Teensy) definitions.

This means the Teensy has 16 (8 in, 8 out) total endpoints.

• The first two endpoints (0 and 1) are reserved. You cannot use them. Endpoint

0 is used to send and receive information regarding USB enumeration. Endpoint

1 is reserved for the USB port, leaving us the users 12 (6 IN / TX, 6 OUT /

RX) total endpoints for us to use.

• There are some caveats we must abide by:

‣ Each endpoint can simultaneously send and receive, meaning it is possible for

us to #define MIDI_RX_ENDPOINT 4 and #define MIDI_TX_ENDPOINT 4 and not

have an unhappy Teensy. The catch is that only one endpoint can be used for

each function that sends data to the host. If the HID Keyboard is sending

data at endpoint 5, there cannot be a MIDI controller using endpoint 5 as

well.

‣ Some functions require more endpoints than others. Consult the elements in

which you copied to find out how many TX and RX endpoints are needed per

function.

‣ You can configure how each endpoint will behave by using #define

ENDPOINTN_CONFIG to ENDPOINT_RECEIVED_BULK, INTERRUPT, or UNUSED. You

can determine which to use based on the materials you copied earlier.

3.1.2. Final boards.txt Modification

#elif defined(USB_SERIAL_MIDI_HID)

 #define VENDOR_ID 0x16C0 // you probably do not need to rename these.

 #define PRODUCT_ID 0x488

 #define MANUFACTURER_NAME {'M', 'i', 's', 's', 'i', 'l', 'e', ' ',

 'S', 'i', 'l', 'o'}

 #define MANUFACTURER_NAME_LEN 12

 #define PRODUCT_NAME {'S', 'e', 'r', 'i', 'a', 'l', ' ', '&', ' ',

 'M', 'I', 'D', 'I', ' ', '&', ' ', 'H', 'I', 'D'}

 #define PRODUCT_NAME_LEN 18

 //FROM MIDI & SERIAL

 #define EP0_SIZE 64

 #define NUM_ENDPOINTS 7

 #define NUM_INTERFACE 6 // (serial = 2) + (hid = 3) + (midi = 1)

 //ENDPOINTS

8

 #define CDC_ACM_ENDPOINT 2 //Serial

 #define CDC_RX_ENDPOINT 3

 #define CDC_TX_ENDPOINT 3

 #define MIDI_RX_ENDPOINT 4

 #define MIDI_TX_ENDPOINT 4

 #define KEYBOARD_ENDPOINT 5

 #define MOUSE_ENDPOINT 6

 #define JOYSTICK_ENDPOINT 7

 #define CDC_IAD_DESCRIPTOR 1

 #define CDC_STATUS_INTERFACE 0

 #define CDC_DATA_INTERFACE 1 // Serial

 #define CDC_ACM_SIZE 16

 #define CDC_RX_SIZE_480 512

 #define CDC_TX_SIZE_480 512

 #define CDC_RX_SIZE_12 64

 #define CDC_TX_SIZE_12 64

 #define MIDI_INTERFACE 2

 #define MIDI_NUM_CABLES 16

 #define MIDI_TX_SIZE_12 64

 #define MIDI_TX_SIZE_480 512

 #define MIDI_RX_SIZE_12 64

 #define MIDI_RX_SIZE_480 512

 #define MOUSE_INTERFACE 3 // Mouse

 #define MOUSE_SIZE 8

 #define MOUSE_INTERVAL 1

 #define KEYBOARD_INTERFACE 4 // Keyboard (Media Keys apparently are a

separate thing.)

 #define KEYBOARD_SIZE 8

 #define KEYBOARD_INTERVAL 4

 #define JOYSTICK_INTERFACE 5 // Joystick

 #define JOYSTICK_SIZE 12 // 12 = normal, 64 = extreme joystick

 #define JOYSTICK_INTERVAL 2

 #define ENDPOINT2_CONFIG ENDPOINT_RECEIVE_UNUSED +

ENDPOINT_TRANSMIT_INTERRUPT

 #define ENDPOINT3_CONFIG ENDPOINT_RECEIVE_BULK + ENDPOINT_TRANSMIT_BULK

 #define ENDPOINT4_CONFIG ENDPOINT_RECEIVE_BULK + ENDPOINT_TRANSMIT_BULK

 #define ENDPOINT5_CONFIG ENDPOINT_RECEIVE_UNUSED +

ENDPOINT_TRANSMIT_INTERRUPT

 #define ENDPOINT6_CONFIG ENDPOINT_RECEIVE_UNUSED +

ENDPOINT_TRANSMIT_INTERRUPT

 #define ENDPOINT7_CONFIG ENDPOINT_RECEIVE_UNUSED +

ENDPOINT_TRANSMIT_INTERRUPT

9

3.1.3. Alternative: tinyUSB

Alternatively, we can utilize TinyUSB to do all this work for us. TinyUSB is a USB

device that allows for the creation of composite USB devices without the need to edit

internal Teensyduino system files. Adafruit provides a nice abstraction with their

Adafruit_TinyUSB library that can easily create a MIDI and HID and Serial device.

A simple example is listed below for creating a Serial and MIDI composite device:

 #include <Adafruit_TinyUSB.h>

 Adafruit_USBD_MIDI usbMidi;

 Adafruit_USBD_Serial usbSerial;

 void setup() {

 // begin the device if we haven't yet.

 if(!TinyUSBDevice.isInitialized())

 TinyUSBDevice.begin(0);

 usbSerial.begin(115200); // begin the serial device, other bookkeeping

stuff

 usbMidi.setStringDescriptor("TinyUSB MIDI");

 MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usbMidi, MIDI);

 MIDI.begin(MIDI_CHANNEL_OMNI);

 // failsafe-if already enumerated, additional class

 // driver begin() for stuff like msc, hid, midi won't

 // kick in until re-enumeration.

 if(!TinyUSBDevice.mounted()) {

 TinyUSBDevice.detatch();

 delay(10);

 TinyUSBDevice.attach();

 }

 // don't exit setup() if we're not set up

 while(!TinyUSBDevice.mounted()) delay(10);

 // the rest of your setup() stuff goes here

 }

 void loop() {

 #ifdef TINYUSB_NEED_POLLING_TASK

 TinyUSBDevice.task();

 #endif

 // failsafe

 if (!TinyUSBDevice.mounted()) return;

 // the rest of your loop() stuff goes here

 }

10

3.2. Passing Function Arguments

Computer Science programs like the one at the Courant School stress ideas such as

abstraction, the idea of consolidating routines into functions that can be called

elswehere with one line of code. C++ has the ability to directly manipulate the

different types of memory on the Teensy that is readily available, a feature native to

the C programming language3.

As programs grow in complexity, it’s common to abstract data and functions into

Objects for readability. But in doing so, it’s important to understand the following

distinction between passing by value, reference, or pointer. The following table

outlines the difference without getting into the weeds of memory management,

pointers, or compunter architecture.

Pass by Value Pass by Reference Pass by Pointer

Function read(BUTTON b) read(BUTTON& b) read(BUTTON* b)

Usage read(b) read(b) read(&b)

Notes

• accessing:

obj.valueOrFunction

• copies object into

function, values stored

into said copy. copy

gets deleted at the end

of the function

• doesn’t save your

data

• accessing:

obj.valueOrFunction

• gives function an

“alias” of the object,

modifies actual object

• must be initialized

• cannot be null, cannot

be changed/reseated

• saves your data

• accessing:

obj->valueOrFunction

• gives function the

memory address of the

object, modifies actual

object

• doesn’t need to be

initialized

• can be null and

changed/reseated

• saves your data

A simple example program has been provided below for context for the error I

designed by accident. A BUTTON struct is defined to encapsulate the data required to

get a sensor to properly talk to the microcontroller. Three buttons are declared and

initialized, and three readButton functions are defined, each using an argument

passing method mentioned above. The example is shown on the next page.

Based on the table above, readButton1 will not change, but readButton2 and

readButton3 will, because readButton1 will store any changes made to the object to

the local copy stored in the function. So by the time the function exits, the local copy

will get removed and no read data will be saved. readButton2 and readButton3

doesn’t accomplish this by sending some form of pointer to the function, effectively

directing the function to save its values at the original object that has been declared

within a given program.4

3This may be common sense to some people studying Computer Science. I write this section
because A) I did not pay attention during the C lectures and B) for anybody else in the back who is
interested

4This is here solely for reference, this is not a lesson in memory management. You can find
information about pointers and references on YouTube or in a Computer Architecture class

11

https://www.youtube.com/watch?v=2ybLD6_2gKM
https://www.youtube.com/watch?v=wro8Bb6JnwU

3.2.1. Example

 // Arduino program comparing pass

 // by value, reference, & pointer.

 // Struct that aggregates all

 // potentially meaningful

 // variables pertaining to the

 // buttons we wish to use

 struct BUTTON {

 int pin;

 bool prev_state;

 bool state;

 String name;

 }

 // define global buttons

 struct BUTTON button1 = {3, false,

 false, "Button 1"};

 struct BUTTON button2 = {4, false,

 false, "Button 2"};

 struct BUTTON button3 = {5, false,

 false, "Button 3"};

 void setup() {

 pinMode(button1.pin, INPUT_PULLUP);

 pinMode(button2.pin, INPUT_PULLUP);

 pinMode(button3.pin, INPUT_PULLUP);

 }

 void loop() {

 readButton1(button1);

 readButton2(&button2);

 readButton3(button3);

 Serial.println("====\nButton 1:");

 Serial.println(button1.state);

 Serial.println(button1.prev_state);

 Serial.println("====\nButton 2:")

 Serial.println(button2.state);

 Serial.println(button2.prev_state);

 Serial.println("====\nButton 3:");

 Serial.println(button3.state);

 Serial.println(button3.prev_state);

 }

// read, store, and print data;

// FAULTY as it is pass by value

void readButton1(BUTTON b) {

 b.state = !digitalRead(b.pin);

 if(!b.prev_state && b.state)

 Serial.println("1");

 b.prev_state = b.state;

}

// read, store, and print data

// (but it actually works)

void readButton2(BUTTON* b) {

 b->state = !digitalRead(b->pin);

 if(!b->prev_state && b->state)

 Serial.println("2");

 b->prev_state = b->state;

}

// read, store, and print data;

// (but it actually works)

void readButton3(BUTTON& b) {

 b.state = !digitalRead(b.pin);

 if(!b.prev_state && b.state)

 Serial.println("3");

 b.prev_state = b.state;

}

/*

* Remember, there is no difference

* functionality wise between

* readButton2 and readButton3

* for this given context. There

* are characteristics listed in the

* table which may actually make a

* big difference in some cases, but

* for reading and storing button

* data, there is no difference.

*

* Though, some people prefer pass

* by reference so you don't have to

* write a "->" in place of the "."

* for every method call.

*/

12

3.3. Display Optimization

In principle, a display like the ILI-9341 TFT can give the illusion of a moving image

by simply displaying a thing, removing that thing, and very quickly displaying

another thing. Imagine that the thing we wanted to display is a variable that changes

as a parameter or sensor changes over time. Naively, we can implement something

akin to the following pseudocode:

void loop() {

 print the value on the screen

 clear the screen

}

Depending on how clear the screen is implemented, this can be very inefficient. The

small SD1306 displays that Steve probably has you use will struggle in performance if

they were given an implementation of the above, since the clearDisplay() function in

the Adafruit_SSD1306 library will iteratively set every single pixel to black on the

screen. This is especially important for dealing with larger multicolor displays. We

can address this by modifying the pseudocode above to only clear the values that are

changing:

void loop() {

 if(a value has changed) {

 print the value to the screen

 clear only the value that has changed

 }

}

3.3.1. Implementation

An implementation that I incorporated to this project using the Adafruit_GFX library

and the Adafruit ILI-9341 TFT Display involves two functions: display() and

clear(). The code below assumes we have the following structures, but you do not

need to organize your code in such a manner.

 struct BUTTON {

 int pin;

 String name;

 bool prev_state;

 bool state;

 };

struct POT {

 int pin;

 String name;

 int prev_val;

 int val;

};

void display(Adafruit_ILI9341& display, String value, int x, int y,

 int fColor, int bColor) {

 display.setCursor(x, y);

 display.setTextColor(fColor, bColor);

 display.print(value);

}

void clear(Adafruit_ILI9341& display, String value, int x, int y) {

 display.setCursor(x, y);

 display.setTextColor(ILI9341_BLACK, ILI9341_BLACK);

 display.print(0xDA); // a black square, clears one character

}

13

This lets us write the following functions that let us print Strings with a fast refresh

rate to the display:

void printButton(Adafruit_ILI9341& display, BUTTON& b, int x, int y,

 int fColor, int bColor, int debug = true) {

 if(b.prev_state != b.state) { // print only when the value is different

 String toPrint = b.name + ": " + b.value;

 clear(display, toPrint, x, y);

 display(display, toPrint, x, y, fColor, bColor);

 }

 if(debug) {

 Serial.println(b.name);

 Serial.println(b.state);

 }

}

void printPots(Adafruit_ILI9341& display, POT& p, int x, int y,

 int fColor, int bColor, int debug = true) {

 if(p.prev_val != p.val) { // print only when the value is different

 String toPrint = p.name + ": " + p.value;

 clear(display, toPrint, x, y);

 display(display, toPrint, x, y, fColor, bColor);

 }

 if(debug) {

 Serial.println(p.name);

 Serial.println(p.value);

 }

}

In a loop() function:

BUTTON b = {3, "Button", false, false}; // pin, name, prev state, state

Adafruit_ILI9341 display;

void setup() {

 pinMode(b.pin, INPUT_PULLUP);

 display.begin();

}

void loop() {

 readButton(b); // we assume this reads and stores a button's value

 printButton(display, b, 100, 100, ILI9341_RED, ILI9341_BLACK);

}

3.3.2. Using millis()

Another way you can implement a high refresh rate is by using millis(), where

instead of relying on the internal clock speed of the Teensy’s CPU, we can

standardize the rate at which we clear and print to the screen based on a predefined

frame rate:

#define FRAME_RATE 30

unsigned long lastFrame = 0;

14

BUTTON b = {3, "Button", false, false}; // pin, name, prev state, state

void loop() {

 readButton(b); // digitalRead() + storing in button struct

 if(millis() > lastFrame + FRAME_RATE) {

 lastFrame = millis();

 printButton(b, 100, 100, ILI9341_RED, ILI9341_BLACK);

 }

}

However I have found that with a lot of information on the screen (displaying rapidly

changing values) all methods mentioned above exhibit performance issues. A

potential solution is highlighted below for anybody who needs to efficiently print 12+

rapidly changing parameters in real time onto a display.

3.3.3. Framebuffers

Future iterations of the project plan on implementing a frame buffer5. Frame buffers

acknowledge the fact that there is both a CPU and time cost that must be paid when

rendering an image onto a display. So they stockpile pixel information inside of an

array (or some other data structure) to pay this CPU and time cost once in bulk.

Typically two or three frame buffers are used in tandem so when one frame buffer is

displaying information, we can write pixels to another frame buffer and hide the bulk

CPU and time cost behind an image that is already being displayed. If you wish to

implement a frame buffer on your own, the pseudocode is outlined below:

 framebuffer()

 input: 2 arrays / framebuffers, T time units, information to write

 goal: print to screen efficiently.

 repeat:

 1. write information to framebuffer (array)

 2. wait for hardware to draw framebuffer

 3. swap and repeat steps 1 & 2 with the other framebuffer

Frame buffers are incredibly efficient and are the backbone to modern display drivers

that regularly appear in flatscreen televisions, high-refresh rate gaming monitors, and

touchscreens for mobile devices. As it turns out, we can also optimize this even

further with differential updates. Instead of uploading a display-sized array to the

display driver or graphics card, we only upload the pixels that have changed;

ultimately reducing the memory overhead on a computationally intensive task for a

microcontroller.

5This is also because Adafruit’s Adafruit_ILI9341 display firmware does not come with a
framebuffer built-in. It probably does not matter, but it is an optimization I’m interested and
excited about because it allows for cooler stuff to be displayed at a smaller cost.

15

3.4. Object Oriented Design

Note that this following section has not been implemented in the source code on

GitHub. Additionally, the system I propose in this section requires some C++

programming context (which will be outlined in the following section.

3.4.1. Overview

The beauty and detriment that of C++ and Object Oriented Programming lies

within objects and cryptic error messages. The software side of this project involves a

data processing environment that aims to allow the user to process and control the

data in interesting ways such that the output can deviate from raw sensor data.

C++ is an object oriented programming language, which means the user can create

their own datatypes that contain functions and variables that are distinct to said

datatype. An interesting property of Object Oriented Programming is the principle of

inheritance6, where we can create datatypes using a previous datatype. For example,

consider the Scale class below:

class scale {

public:

 scale(std::vector<int> notes);

 ~scale();

 virtual void arpeggio(); // because it is virtual, we must implement it.

 int play(int scale_degree);

 int playMelody(int melody[], int rhythms[]);

 void transpose(int i);

protected: // this isn't private for a reason discussed later

 std::vector<int> notes;

};

It’s an incredibly rudimentary scale class that stores some MIDI notes defined by the

user and plays a given scale degree. However, if we wish to create a CMajor or DMajor,

we can use this scale class as a framework so we do not need to write each function

and variable again.

class cMajor : public scale

{

public:

 cMajor() : scale({notes to cmajor}) {}

 ~cMajor();

 // we write override to let C++ know that this is the version of the

 // function to use. Otherwise, C++ would have to pick between the

 // parent object (scale)'s methods or the child object (cMajor)'s

 // methods to use.

 void arpeggio() override; // don't need override here, but compiler likes it

 int play(int scale_degree) override;

 int playMelody(int melody[], int rhythms[]) override;

 void transpose(int i) override;

};

6see this link for more information

16

https://www.geeksforgeeks.org/cpp/what-is-inheritance-1/

This principle is used quite a bit for the example I propose below.

3.4.2. Design

My Product Design system roughly works in the following flowchart:

User Input Data Processing Output

Although I plan on adding extra features (see Planned Features), for simplicity’s

sake, we can assume the following system for the “Data Processing”:

Each parameter that the Teensy can read values to store in a variable must have a

behavior, a set of rules that the parameter will follow. If we zoom into the Data

Processing field from the flowchart above, this would give us the following:

Parameter

Raw Sensor Data Moving Average Filter Behavior

Modifers

MIDI

CV

etc.

3.4.2.1. Parameter Class

Note that when each parameter gets read by the Teensy, it also gets smoothed to

remove any analog noise. This is why the “Moving Average Filter” step exists. You

can think of the italicized boxes as apart of a “Parameter” that the user can interact

with. In code, this means we can view each parameter as the following:

// quickly abstracting pins for convenience:

typedef struct device_pin {

 String name;

 int pin;

} device_pin;

// enums for easily reading and labeling parameters

enum class PARAM_TYPE {

 POT,

 BUTTON,

 GYRO,

 MISC

};

// mostly abstract base class. This is similar to Interfaces in Java.

// That is also why we do not have a constructor or destructor here.

class base_param

{

 virtual bool begin(); // intialize parameter

 virtual void read(); // read raw value

 virtual void debug(); // enable serial printing

17

 virtual void process(); // smooth raw value

};

// base parameter class of typename N

template <typename N>

class param : public base_param

{

public:

 param() = default;

 param(String n, struct device_pin p) : pin(p), name(n) {}

 param();

 bool begin() override;

 void read() override;

 void process() override;

 void debug(bool s, bool d) override;

 // getters and setters

 N get_val();

 N get_raw_val();

 device_pin* get_device_pin();

 String get_pin_name();

 String get_name();

 void set_name(String n);

 void set_pin_name(String n);

 void set_pin(int p);

 void set_pin_struct(device_pin p);

protected:

 String name;

 device_pin pin;

 N processed_value; // after smoothing

 N prev_raw_val; // previous value

 N raw_val; // raw value

};

// example use with a button

class button : public param<bool>

{

public:

 button() : param<bool>("untitled button", {"nonexistent pin", -1}) {}

 button(int pin, String pin_name, String param_name) :

 param<bool>(param_name, {pin_name, pin}) {}

 bool begin() override;

 void debug(bool serial, bool display) override;

 void read() override;

 void process() override;

 PARAM_TYPE get_param_type() {

 return type;

 }

private:

18

 PARAM_TYPE type;

};

3.4.2.2. Behavior Class

Because behaviors can potentially get quite involved, I we abstract their logic into a

separate object. So then we can imagine a setup like the following:

// mostly abstract base class.

template <typename IN, typename OUT>

class base_behavior

{

public:

 base_behavior() = default;

 ~base_behavior() = default;

 virtual OUT process(const IN& input); // for any values we may have to pass

into it

 String get_name();

protected:

 PARAM_TYPE type;

 int id;

 String name;

};

// example probablistic button behavior

template <typename N>

class probs_behavior : public base_behavior<bool, N>

{

public:

 probs_behavior() = default;

 ~probs_behavior() = default;

 N process(const bool& input) {

 return probs[(index + 1) % 10];

 }

private:

 int index;

 N probs[10]; // if we wanted to have this be variable size, use

std::vector<N>

};

3.4.2.3. Wrapper Class and Application

We currently have two disjoint objects that are important to this system, but we

would probably like to have their functionalities together in one spot so we do not

need to call methods from multiple objects to achieve one goal. Thus, we can create a

wrapper object that combines the two together:

template <typename IN, typename OUT>

class parameter_wrapper

19

{

public:

 parameter_wrapper() = default;

 parameter_wrapper(param<IN> p, base_behavior<IN, OUT>& b) :

 param(p), behavior(b) {}

 ~parameter_wrapper();

 // may need a little more than this, but I think this gets the idea across

 OUT process(const IN& input) {

 param.read();

 return behavior.process();

 }

 // other methods like getter and setters are hidden.

private:

 base_behavior<IN, OUT> behavior;

 param<IN> param;

};

In the Arduino IDE:

#include "behavior.h"

#include "parameter.h"

#include "parameter_wrapper.h"

// ... other libraries

button button(3, "button pin", "test button");

probs_behavior<int> probs;

parameter_wrapper button_wrapper;

void setup() {

 button_wrapper(button, probs);

}

void loop() {

 Serial.println(button_wrapper.process());

}

There could be other extensions to this system, such as including multiple behaviors,

or including “modifiers” that could lightly modify values as they enter a behavior, or

including “modulators” that change behaviors or modifiers over time, or allowing the

wrapper objects create parameter and behavior objects themselves, but I believe that

for the sake of demonstration, the system above is simple enough to understand the

idea that I intend to convey for the “data processing” box. There is an additional

GUI system that also has to be constructed for the user to interact with, but I

haven’t had any idea as to how that would look like.

3.5. The Printed Circuit Board & Physical Components

The PCB was inspired by Mason Mann’s less rigid designs that he has used in his

various selfmade audio electronics projects. As my first printed circuit board, I think

20

it turned out well, if “turned out well” translates to properly alinging traces, ensuring

every part has a correct footprint, and that every component can properly interface

with the Teensy. The number of headaches that have been associated with

the design of this circuit board do not outweigh the aesthetic chaos that

comes with the board. It is subsequently obvious from my personal experience

developing this board that I strongly discourage any designs similar to the liberties

that I took.

This anecdote centers around the Hall Effect joysticks I bought from Aliexpress and

its inability to print sensor information. There is an interesting pendulum that swings

back and forth in regards to the parts that this prototype needs. On one hand, parts

can be readily available for cheap on websites such as Mouser, Adafruit.com, Digikey,

or Aliexpress. However, in choosing locations such as Aliexpress to source parts from,

it becomes rather difficult to source proper datasheets for certain products. There

was an issue I encountered with a hall effect joystick that did not print data to Serial

even aftewr being properly wired. After investigating the power trace on my PCB I

noticed it was connected to the 5v pin isntead of the 3.3v pin most components are

designed to take. After rewiring the power wire,the hall effect joystick in question still

was not able to print values out to Serial.

Additionally, in the design like this, I found that more of my attention was taken

away from ensuring that the PCB itself was properly put together (since I also

accidentally flipped the display’s footprint, leading to another headache resoldering

wires to the proper pins. Had the PCB been a little bit more neat, there would most

certainly be a clearer procedure to refer to when troubleshooting potential causes.

3.6. The Ambitious NYU Student

It’s likely that because you are reading this part of the report you’re just as

interested in audio hardware, software, or audio embedded systems as I am. If I were

to guess, you are also probably looking for anybody or anything that will satisfy this

thirst of knowledge, an interest for the design patterns and theory through the lens of

art. There’s already a lot to take away from this giant word vomit, but it’s also

important to acknowledge the following:

1. It’s likely that if you are interested in taking the Product Design class, you have

no idea where to begin in terms of fabrication and enclosure design. Do not

make more work for yourself if this is the case.

2. It’s very normal to make compromises in this class. I had to make a lot of

compromises throughout the semester because in addition to the Product Design

class, I took Basic Algorithms and Operating Systems, the notorious weeder

classes in the Courant Computer Science department.

3. It’s not fair to compare yourself to others in this class. See the second

point. If the first point also applies to you, there is no reason for comparisons or

an unending amount of anxiety that you are falling behind. Lower the bar, nurture

your ideas and the soul. They will all come eventually. Having gone through this

semester, I don’t think it is worth the added stress of getting everything done at

21

once compared to the amount of sleep and caffeine that you will lose (at least from

my experience)

If it’s not clear yet, be sure to set your bar lower than you’d think. Not for the

sake of putting you down, rather for the sake of your mental health and sleep

schedule, unless you really know what you’re doing.

4. Fabrication

4.1. Design Goals for Future Prototypes:

My product will functionally look similar to handheld gaming consoles, namely the

Nintendo Switch, the Wii-U, and the Steam Deck, shown below. Future iterations on

this project involve on 3D printing an enclosure (smaller than my current breadboard

layout)

to ensure that the device maintains a small formfactor and is handheld. I might need

to include additional 3D printed components (for the DPAD, or a custom joystick

footprint).

Figure 1: The Valve Steam Deck (left) and Nintendo Switch (right)

Figure 2: The Nintendo Wii-U

22

4.2. Inspirations

My product takes inspiration from the Y2K “translucent tech” design, and the

transparent yet minimal asthetic from tech companies like Nothing and Teenage

Engineering.

Figure 3: The Nothing Ear 2 (left) and Nothing Ear 3 (right) wireless earbuds

Figure 4: The Nothing 3a Pro phone lineup

23

Figure 5: The Teenage Engineering TX-6 and OP-1

Figure 6: Y2K translucent style tech products. the Apple iMac G3 (left), Nintendo

GameBoy (middle), and Nintendo GameCube (right)

24

4.3. Rough Sketch

Figure 7: rough sketch of my game controller

25

5. Planned Features
There are a plethora of features that I plan on adding in the future. Below is an

incomplete list:

Better documentation of sourced parts

Code Refactoring for better Object-Oriented Design

Menu / GUI Infrastructure

Asynchronous analogRead() using enableInterrupts() and disableInterrupts()

from the Teensy ADC class.

FrameBuffer display implementation

Bluetooth Support

Lithium-ion battery power supply option

PlatformIO migration

tinyUSB stack implementation for thorough USB-Compositing

XInput Option via tinyUSB.

Modular-based Data Processing Firmware Design:

Behaviors

• Allows the user to set the ways in which a parameter behaves. One per

parameter, per output must be allowed.

• For instance, a button can be a simple toggle switch (on/off), trigger a random

value upon button press, cycle through an array of values, probablistically

trigger a set of values, etc.

• Similarly, potentiometers can also simply display the X and Y values, a polar

coordinate, or a logical computation between the two (print X if X>Y, Y

otherwise), etc.

• Far-fetched behaviors:

‣ physics simulations (each bounce of a marble in a container is an output of

some kind)

‣ time-stretching (ie the incoming values for a parameter will be slower by a

given factor)

‣ logic gates (ie a button will only output a value 𝑣 if conditions A and B are

met. If we assume condition A is when the button is pressed and condition B

when the gyroscope detects very little movement, we can easily create very

dynamic conditionals for data to be sent.)

Modifiers

• Allows the user to fine-tune the parameter’s pre-behavior / post-behavior values

to their liking. Aggregates in a tree data structure.

• for instance, a button can obtain the behavior to send values 𝑎, 𝑏, or 𝑐 as an

output value. The user can set what each value is, and whether or not he

wishes to bias an output (ie introduce a coefficient that will be summed or

multiplied with the output), slew the output (if 𝑎 was sent out first and 𝑏 is the

next value, we interpolate between the two discrete values), or invert the

output.

26

• similarly, a potentiometer can obtain the behavior to send the polar coordinates

of its respective 𝑥 and 𝑦 potentiometers. It can decide the smoothing value, bias

the outputs using some mathematical function, or feed the outputs into a

separate function of its own (ie if 𝑥 and 𝑦 are phase or frequency parameters for

a Lissajous figure, and the output of the function is the phase or frequency

relationships of the two)

Modulators

• additional functions that control different modifiers / behaviors

(in the scenario of the button above, if we had a way to deterministically change

which values 𝑎, 𝑏, 𝑐 were being outputted in addition to the button trigger, or a

way to modify 𝑎, 𝑏, 𝑐 by some amount)

• audio thru modulator that lets the user control parameter behaviors

with audio (a button press gets frequency modulated with a incoming audio

signal)

6. Materials List

6.1. Hardware

Component Notes Count Price

Full size Breadboard
for prototyping, can be from

any vendor.
2 $11.9

Analog 2-axis Thumb Joystick

with Select Button

These can be replaced with hall

effect sensors as mentioend

above. The ones I got from

Aliexpress were from looking

up “hall effect joystick” and

picking one that wasn’t

expensive

2 $11.9

Soft tactile push buttons (20pk)

These are the ones I ended up

using but any push button will

do

1 $2.50

MCP4728 4-channel DAC recommended by Steve 1 $7.50

LSM6DSOX Gyroscope
probably overkill but any

gyroscope can work
1 $11.95

PJRC Teensy 4.1 Microcontroller of choice 1 $29.60

10k Breadboard Trim Pot

Act as triggers, can be buttons

need be. You can also find

these on Aliexpress by

searching for Hall Effect Axis

Resistor

2 $2.50

27

https://www.adafruit.com/product/239
https://www.adafruit.com/product/512
https://www.adafruit.com/product/512
https://www.adafruit.com/product/4183
https://www.adafruit.com/product/4470
https://www.adafruit.com/product/4438
https://www.pjrc.com/store/teensy41.html
https://www.adafruit.com/product/356

Component Notes Count Price

2.2″ 18-bit color TFT display

Any 2.2″ TFT display should

work, doesn’t necessarily need

to be from Adafruit.

1 $24.95

6.2. Software

Library Notes

Adafruit ILI9341 Adafruit driver library for the ILI9341 display.

Adafruit MCP4728 Adafruit driver library for the MCP4728 DAC.

Adafruit LSM6DSOX Adafruit driver library for the LSM6DSOX.

Keyboard.h PJRC Keyboard library

usb_midi.h USB MIDI PJRC library

Wire.h Dependency for adafruit libraries

SPI.h Dependency for adafruit libraries

Adafruit GFX Library GFX library used during most of prototyping.

ILI0341_T4

Requires manual installation. Framebuffer

optimized for Teensy 4.1 and ILI9341 TFT

displays. Use this if you intend on using

the tgx graphics library. Never fully

implemented. Remove the Adafruit

ILI9341 driver if you plan on using this

one.

tgx, a tiny 2D/3D graphics library

Requires manual installation. Graphics

library optimized for ILI9341 TFT displays.

Can display simple shapes, curves, images,

animations, and 3D shapes. Never fully

implemented.

ResponsiveAnalogRead

OPTIONAL, if you do not want to

implement asynchronous analog reads, or if you

do not care about this micro-optimization.

Adafruit GFX Buffer

OPTIONAL; requires the Adafruit-

ILI9341 driver, if you want a framebuffer for

the Adafruit GFX library.

Arduino XInput

XInput library for microcontrollers like the

PJRC Teensy 4.1, for later implementation.

Emulates Xbox 360 communication protocol.

Requires the installation of the following

28

https://www.adafruit.com/product/1480
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit_MCP4728
https://github.com/adafruit/Adafruit_LSM6DS
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/vindar/ILI9341_T4
https://github.com/vindar/tgx
https://github.com/dxinteractive/ResponsiveAnalogRead
https://github.com/vjmuzik/Adafruit_GFX_Buffer
https://github.com/dmadison/ArduinoXInput?tab=readme-ov-file
https://github.com/dmadison/ArduinoXInput_AVR

	1. Overview
	2. User Interface
	3. Challenges
	3.1. Composite USB Devices
	3.1.1. Steps
	3.1.2. Final boards.txt Modification
	3.1.3. Alternative: tinyUSB

	3.2. Passing Function Arguments
	3.2.1. Example

	3.3. Display Optimization
	3.3.1. Implementation
	3.3.2. Using millis()
	3.3.3. Framebuffers

	3.4. Object Oriented Design
	3.4.1. Overview
	3.4.2. Design
	3.4.2.1. Parameter Class
	3.4.2.2. Behavior Class
	3.4.2.3. Wrapper Class and Application

	3.5. The Printed Circuit Board & Physical Components
	3.6. The Ambitious NYU Student

	4. Fabrication
	4.1. Design Goals for Future Prototypes:
	4.2. Inspirations
	4.3. Rough Sketch

	5. Planned Features
	6. Materials List
	6.1. Hardware
	6.2. Software

