GAMING HANDHELD

AUDIO CONTROLLER
Silas Wang

Electronic Product Design Fall 2025

Contents

L OV VI OW ettt e e 3
2. User INterfacet 5
3. ChAlleN@ES . . .ottt et 6
3.1. Composite USB Devices e 6
Bl L. S PS it 7

3.1.2. Final boards.txt Modification i, 8

3.1.3. Alternative: tinyUSBttt 10

3.2. Passing Function Argumentso i 11
3.2. 1. Example ..o 12

3.3. Display Optimizationo 13
3.3.1. Implementation 13

3.3.2. Using MilUis () «ovnn e 14

3.3.3. Framebuffers 15

3.4. Object Oriented Designo e 16
4.1, OVEIVIEW oot e e e e e 16

.42, DeSIZI ..ot 17
3.4.2.1. Parameter Classoouuiiiiii i 17

3.4.2.2. Behavior Class ...t 19

3.4.2.3. Wrapper Class and Application 19

3.5. The Printed Circuit Board & Physical Components 20
3.6. The Ambitious NYU Student 21

4. Fabrication 22
4.1. Design Goals for Future Prototypes: o i 22
4.2, INSPITAtIONS . .. oottt 23
4.3. Rough Sketch 25

5. Planned Features 26
6. Materials Lastonuui 27
6.1. HardwWare 27
0.2, SOTEWATE ..ttt 28

1. Overview

At a high level, my Electronic Product Design prototype is a device that is capable of
controlling both a video game and audio equipment (be it, music hardware or

software).

You can technically write this device off as a MIDI controller, but this device has the
ability to implement any kind of communication protocol

(CV, MIDI, OSC, HID, etc.) and simulatneously control two devices that each require
a different protocol to communicate with it. You can think of it as the following

/‘ Output (program 1)

Data Processing

\' Output (program 2)

where User Input outlines the User interacting with the device and its parameters,

fHowchart:

\ 4

User Input

Data Processing refers to the firmware witin the device, and Qutput refers to the
different devices (software or hardware) that it can control. The current version of
this prototype focuses on creating a device that can communicate with MIDI devices
and video games.

Future designs will align with the Y2K transparent-tech style heavily inspired by tech
companies like Nothing, and technology from the Y2K era. See Section 4 for more
information.

Handheld gaming controllers are popular choices for gaming due to their form factor
and convenience. Their integration with existing IP and the combination of hardware
and software optimization lead to a device powerful enough to run demanding game
titles whilst being light enough to carry around in a backpack. Some examples of
these include the Steam Deck, Nintendo Switch, and Lenovo Legion GO.

To my knowledge, there is little exploration for products that balance the “sound
design by playing video games” mantra. This prototype and the subsequent
documentation attempts to address this gap by thoroughly documenting what I have
learned whilst creating this project.

An image of the prototype and PCB can be found below:

https://store.steampowered.com/steamdeck
https://www.nintendo.com/us/gaming-systems/switch/
https://www.lenovo.com/us/en/p/handheld/legion-go/len106g0001

L&

©0000006000000,

A video demonstration can be found here.
All code (test .ino files, classes, etc.) can be found on GitHub.

All parts and software used can be found at Section 6

https://youtu.be/W_0hcfEMy6c
https://github.com/sialboat/product-design-sound-controller

2. User Interface

The parameters on the user interface is modeled after gaming controllers such as the

Xbox controller or the PlayStation controller. Two joysticks, each with a select
button are utilized alongside two four-button arrays, one labeled DPAD and the other
XYAB respectively. In addition, the prototype board has the capacity to support two
trigger buttons, two analog triggers, and two “miscellaneous” buttons, akin to a
typical gaming controller.

Higher end gaming controllers utilize Hall-Effect Sensors, which are said to offer

higher precision, finer deadzones', and a longer product lifespan. For the sake of this
documentation, we assume no differences.

Additionally, a few extra components are used. A gyroscope is used to track the
position and orientation of the prototype to offer a more expressive set of gestures
that can be translated as MIDI, and a DAC is utilized to write the digitized values
collected from sensors as voltage, so hardware music devices can also be controlled. A
2.2” TFT ILI9341 display has also been used to provide a visual interface for the
firmware. The exact gyroscope and DAC I got from Adafruit is the LSM6DSOX
Gyroscope and MCP4728 DAC. Additionally, a switch is used to bypass the
Keyboard and Mouse, making it easy to set up MIDI CC parameters without
destroying a DAW project file. General usage would be

load a project file, DAW supporting MIDI-CC of choice

enable bypass switch

map parameters and hit record

open desired video game

AN

play the video game

This project utilizes the Teensy 4.1 microcontroller. At the project’s current state,
values are read into sensors via analogRead() or digitalRead() function calls,
smoothed via a simple moving average filter to remove potential analog noise, then
translated into MIDI and HID data. In essence, we configure our Teensy
microcontroller to behave as both a MIDI controller and a keyboard/mouse pair.

Future iterations of the project will incoroporate some sort of data processing
software and a GUI for the display.

For more information on the design plans for the fabrication of the device, see
Section 4.

The PCB was designed in KiCad, inspired by Mason Mann, and printed by JLPCB.

'analog joysticks tend to drift / produce noisy values by nature of hardware and its interaction
with the world around it. This makes it difficult for firmware programmers to accurately determine
the minimum and maximum values of this sensor without setting a deadzone, a small range around
the joystick that is treated as its resting state.

https://en.wikipedia.org/wiki/Hall_effect_sensor
https://masonmann.online/electronics/meap/hardware/meap4c/

3. Challenges

Just like the many amazing peers who have taken Product Design with me in the Fall
of 2025, this project had a plethora of challenges that needed workarounds for the
product to get to its current iteration. This is thoroughly covered below:

3.1. Composite USB Devices

This was one of the core components of my project and arguably the sole reason why
this project works in the first place. The Arduino IDE allows users to define a “USB
Mode” under the Tools > USB Mode tab. For the Teensy 4.1, a plethora of USB Modes
are offered, ranging from Serial to 16-Channel MIDI to flight simulators. However, for
the goals that I wished to accomplish with the Teensy, there was no option within
this dropdown that allowed me to send USB, MIDI, and HID (Keyboard and Mouse)
at the same time.

For context, computers send messages that are solely comprised of zeros and ones.
This protocol is what determines the means in which these binary strings are
interpreted. After all, the main difference between MIDI and other digital
communication protocols lies within how different strings are interpreted?.

USB is inherently a Serial architecture. It sends information bit by bit in series.

When a computer powers on, a process within the Operating System runs a routine

that labels all connected devices and assigns each device a respective address through

a process called enumeration. One of the steps within this process is determining

which type of data the device wishes to transfer:

o Interrupts typically come from mice or keyboards and don’t send a lot of
information

e Bulk typically comes from printers, who receive large amounts of information at a
time and requires extra verification to check if the information is correct.

e Isochronous typically involves sending real time data and no error correction
(audio)

During enumeration, host machines like your computer look for USB Descriptors
within each USB device that is connected to the USB bus of a computer / USB
accepting device. Within these USB Descriptors lies all the information that the host
needs to properly communicate with the devices. So if we want our computer to think
our Teensy 4.1 is simultaneously a computer keyboard, a mouse, and a MIDI
controller at the same time, we must look to adjust the Teensy’s usb descriptors. We
can accomplish this by doing the following:

2as well as how the messages are formatted

3.1.1. Steps

1.

Open Finder and navigate to Users/Library/Arduinol5. There are a couple of ways

to find this folder, as it is hidden to users by default.

1. Command + Shift + G and copy-paste ~/Library/Arduinol5

2. Command + Shift + . whilst in your user folder (Macintosh HD/Users/username-
here)

. Navigate to the following folder: packages/teensy/hardware/avr/1.59.0. The entire

filepath should then be ~/Library/Arduinol5/packages/teensy/hardware/

avr/1.59.0.

Open boards.txt and cores/teensy4/usb desc.h using your favorite text editor.

we are halfway done.

We need to create a new menu interface for this USB device to show up in.

e In boards.txt, we must add the following lines, replacing customusbserial with
the name of the new USB Mode:

teensy4l.menu.usb.customusbserial = Custom USB Serial
teensy4l.menu.usb.customusbserial.build.usbtype = USB CUSTOMUSBSERIAL
teensy4l.menu.usb.customusbserial.upload port.usbtype = USB CUSTOMUSBSERIAL
teensy4l.menu.usb.customusbserial.fake serial = teensy gateway

This project uses the Serial monitor (for debugging), MIDI, and HID, so I added the
following lines:

teensy4l.menu.usb.serialmidihid = Serial + MIDI + HID
teensy4l.menu.usb.serialmidihid.build.usbtype = USB SERIAL MIDI HID
teensy4l.menu.usb.serialmidihid.upload port.usbtype = USB SERIAL MIDI HID
teensy4l.menu.usb.serialmidihid.fake serial = teensy gateway

After doing so, we should see the USB Mode appear in the Tools > USB Mode
dropdown.
5. We need to link the preexisting USB Descriptors to the USB mode we made for

the Arduino IDE.

e In usb desc.h, we must add a USB Descriptor configuration that matches our
desired specifications. Notice that each USB Mode has their USB Descriptors to
be defined here. In particular, each USB Mode begins with a #elif
defined (USB_CUSTOMUSBSERIAL) and features a lot of #define lines. You may also
have noticed that there are a lot of comments within the beginning of the file
that explain a lot of what I will be writing in more depth. You can and should
reference that as well.

e Find a pre-defined USB Mode that is close enough to the specifications that
your desired USB Mode is trying to accomplish. Copy-paste and rename it to
whatever you renamed the .build.usbtype from the previous step.

e Find other pre-defined USB specifications that match what you are missing.

For this project, I accomplished this by creating an #elif
defined (USB_SERIAL MIDI HID) and copying the USB Serial + MIDI USB Mode to
start out with. I then added parts from the USB_SERIAL HID configuration to ensure

that my Serial + MIDI + HID USB Mode has the adequate HID descriptors for the
custom USB Mode to properly function. That leaves me with the example below.
6. Endpoints.

e So far, our picture of how the Teensy communicates with a host has been pretty

clear, excpet for one crucial part: How exactly does the Teensy and the host

know where leave this information such that the other party picks it up? The

answer is Endpoints. Endpoints can be thought of as a rendezvous that both
the host and Teensy are aware of. A location where the Teensy knows will reach
the host, and visa versa. The Teensy has 8 bidirectional endpoints, indexed at
zero (0-7). Since each endpoint is bidirectional, each endpoint can be used for
both IN / TX (Teensy -> Host) and OUT / RX (Host -> Teensy) definitions.

This means the Teensy has 16 (8 in, 8 out) total endpoints.

The first two endpoints (0 and 1) are reserved. You cannot use them. Endpoint

0 is used to send and receive information regarding USB enumeration. Endpoint

1 is reserved for the USB port, leaving us the users 12 (6 IN / TX, 6 OUT /

RX) total endpoints for us to use.

There are some caveats we must abide by:

» Each endpoint can simultaneously send and receive, meaning it is possible for
us to #define MIDI RX ENDPOINT 4 and #define MIDI TX ENDPOINT 4 and not
have an unhappy Teensy. The catch is that only one endpoint can be used for
each function that sends data to the host. If the HID Keyboard is sending
data at endpoint 5, there cannot be a MIDI controller using endpoint 5 as
well.

» Some functions require more endpoints than others. Consult the elements in
which you copied to find out how many TX and RX endpoints are needed per
function.

» You can configure how each endpoint will behave by using #define
ENDPOINTN CONFIG to ENDPOINT RECEIVED BULK, INTERRUPT, or UNUSED. You
can determine which to use based on the materials you copied earlier.

3.1.2. Final boards.txt Modification

#elif defined(USB_SERIAL MIDI HID)
#define VENDOR ID 0x16CO // you probably do not need to rename these.
#define PRODUCT ID 0x488
#define MANUFACTURER NAME {'M',6 'i', 's', 's', 'i', '1', 'e', ' ',

ISI, |i|’ I'LII Iol}

#define MANUFACTURER NAME LEN 12
#define PRODUCT NAME {'S', 'e', 'r', 'i', 'a', *'1', " ', '&', " ',

|M|' |I|’ |D|' |I|' 1 |’ |&|' 1 |’ |H|' |I|' |D|}

#define PRODUCT NAME LEN 18

//FROM MIDI & SERIAL

#define EPO SIZE 64

#define NUM ENDPOINTS 7

#define NUM INTERFACE 6 // (serial = 2) + (hid = 3) + (midi = 1)

//ENDPOINTS

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define
#define
#define

#define

CDC_ACM ENDPOINT 2 //Serial

CDC_RX_ENDPOINT 3
CDC_TX_ENDPOINT 3
MIDI RX_ENDPOINT 4
MIDI TX ENDPOINT 4
KEYBOARD ENDPOINT 5
MOUSE_ENDPOINT 6
JOYSTICK ENDPOINT 7

CDC IAD DESCRIPTOR 1

CDC_STATUS_INTERFACE ©
CDC _DATA INTERFACE 1 // Serial

CDC_ACM SIZE
CDC_RX_SIZE 480
CDC_TX_SIZE 480
CDC_RX_SIZE 12
CDC_TX SIZE 12

MIDI INTERFACE
MIDI_NUM CABLES
MIDI TX SIZE 12
MIDI TX SIZE 480
MIDI RX SIZE 12
MIDI RX_SIZE 480

MOUSE INTERFACE
MOUSE SIZE
MOUSE INTERVAL

KEYBOARD INTERFACE

separate thing.)

#define
#define

#define
#define
#define

#define

KEYBOARD SIZE
KEYBOARD INTERVAL

JOYSTICK INTERFACE
JOYSTICK SIZE
JOYSTICK INTERVAL

16
512
512
64
64

2
16
64
512
64
512

3 // Mouse
8
1

4 // Keyboard (Media Keys apparently are a

8
4

5 // Joystick
12 // 12 = normal, 64 = extreme joystick
2

ENDPOINT2 CONFIG ENDPOINT RECEIVE UNUSED +

ENDPOINT TRANSMIT INTERRUPT
#define ENDPOINT3 CONFIG ENDPOINT RECEIVE BULK + ENDPOINT TRANSMIT BULK
#define ENDPOINT4 CONFIG ENDPOINT RECEIVE BULK + ENDPOINT_TRANSMIT BULK
#define ENDPOINT5 CONFIG ENDPOINT RECEIVE UNUSED +

ENDPOINT TRANSMIT INTERRUPT
#define ENDPOINT6 CONFIG ENDPOINT RECEIVE UNUSED +

ENDPOINT TRANSMIT INTERRUPT
#define ENDPOINT7 CONFIG ENDPOINT RECEIVE UNUSED +

ENDPOINT TRANSMIT INTERRUPT

3.1.3. Alternative: tinyUSB

Alternatively, we can utilize TinyUSB to do all this work for us. TinyUSB is a USB
device that allows for the creation of composite USB devices without the need to edit
internal Teensyduino system files. Adafruit provides a nice abstraction with their
Adafruit_ TinyUSB library that can easily create a MIDI and HID and Serial device.
A simple example is listed below for creating a Serial and MIDI composite device:

#include <Adafruit TinyUSB.h>
Adafruit USBD_MIDI usbMidi;
Adafruit USBD Serial usbSerial;

void setup() {
// begin the device if we haven't yet.
if(!TinyUSBDevice.isInitialized())
TinyUSBDevice.begin(0);
usbSerial.begin(115200); // begin the serial device, other bookkeeping
stuff
usbMidi.setStringDescriptor("TinyUSB MIDI");
MIDI CREATE INSTANCE(Adafruit USBD MIDI, usbMidi, MIDI);
MIDI.begin(MIDI CHANNEL OMNI);

// failsafe-if already enumerated, additional class
// driver begin() for stuff like msc, hid, midi won't
// kick in until re-enumeration.
if(!TinyUSBDevice.mounted()) {
TinyUSBDevice.detatch();
delay(10);
TinyUSBDevice.attach();
}

// don't exit setup() if we're not set up
while(!TinyUSBDevice.mounted()) delay(10);

// the rest of your setup() stuff goes here
}

void loop() {
#ifdef TINYUSB NEED POLLING TASK
TinyUSBDevice.task();
#endif

// failsafe
if (!TinyUSBDevice.mounted()) return;

// the rest of your loop() stuff goes here
}

10

3.2. Passing Function Arguments

Computer Science programs like the one at the Courant School stress ideas such as
abstraction, the idea of consolidating routines into functions that can be called
elswehere with one line of code. C++ has the ability to directly manipulate the
different types of memory on the Teensy that is readily available, a feature native to
the C programming language?®.

As programs grow in complexity, it’s common to abstract data and functions into
Objects for readability. But in doing so, it’s important to understand the following
distinction between passing by value, reference, or pointer. The following table
outlines the difference without getting into the weeds of memory management,
pointers, or compunter architecture.

Pass by Value Pass by Reference | Pass by Pointer
Function | read(BUTTON b) read (BUTTON& b) read (BUTTON* b)
Usage read(b) read(b) read (&b)
e accessing:
e accessing: » accessing: obj->valueOrFunction
obj.valueOrFunction obj.valueOrFunction o gives function the
e copies object into e gives function an memory address of the
function, values stored “alias” of the object, object, modifies actual
Notes into said copy. copy modifies actual object object
gets deleted at the end e must be initialized e doesn’t need to be
of the function e cannot be null, cannot initialized
e doesn’t save your be changed /reseated e can be null and
data e saves your data changed /reseated

» saves your data

A simple example program has been provided below for context for the error I
designed by accident. A BUTTON struct is defined to encapsulate the data required to
get a sensor to properly talk to the microcontroller. Three buttons are declared and
initialized, and three readButton functions are defined, each using an argument
passing method mentioned above. The example is shown on the next page.

Based on the table above, readButtonl will not change, but readButton2 and
readButton3 will, because readButtonl will store any changes made to the object to
the local copy stored in the function. So by the time the function exits, the local copy
will get removed and no read data will be saved. readButton2 and readButton3
doesn’t accomplish this by sending some form of pointer to the function, effectively
directing the function to save its values at the original object that has been declared
within a given program.’

3This may be common sense to some people studying Computer Science. I write this section
because A) I did not pay attention during the C lectures and B) for anybody else in the back who is
interested

4This is here solely for reference, this is not a lesson in memory management. You can find
information about pointers and references on YouTube or in a Computer Architecture class

11

https://www.youtube.com/watch?v=2ybLD6_2gKM
https://www.youtube.com/watch?v=wro8Bb6JnwU

3.2.1. Example

//
//

//
//
//

//
st

}

//
st

st

st

Arduino program comparing pass
by value, reference, & pointer.

Struct that aggregates all
potentially meaningful
variables pertaining to the
buttons we wish to use
ruct BUTTON {
int pin;
bool prev_state;
bool state;
String name;

define global buttons

ruct BUTTON buttonl = {3, false,
false, "Button 1"};
ruct BUTTON button2 = {4, false,
false, "Button 2"};
ruct BUTTON button3 = {5, false,
false, "Button 3"};

void setup() {

}

pinMode (buttonl.pin, INPUT_PULLUP);
pinMode (button2.pin, INPUT PULLUP);
pinMode(button3.pin, INPUT_PULLUP);

void loop() {

readButtonl(buttonl);

readButton2 (&button2);
readButton3(button3);
Serial.println("====\nButton 1:");
Serial.println(buttonl.state);
Serial.println(buttonl.prev_state);
Serial.println("====\nButton 2:")
Serial.println(button2.state);
Serial.println(button2.prev_state);
Serial.println("====\nButton 3:");
Serial.println(button3.state);
Serial.println(button3.prev_state);

// read, store, and print data;
// FAULTY as it is pass by value
void readButtonl(BUTTON b) {
b.state = !digitalRead(b.pin);
if(!b.prev_state && b.state)
Serial.println("1");
b.prev _state = b.state;

}

// read, store, and print data
// (but it actually works)
void readButton2(BUTTON* b) {
b->state = !digitalRead(b->pin);
if(!b->prev_state && b->state)
Serial.println("2");
b->prev _state = b->state;

}

// read, store, and print data;
// (but it actually works)
void readButton3(BUTTON& b) {
b.state = !digitalRead(b.pin);
if(!b.prev_state && b.state)
Serial.println("3");
b.prev _state = b.state;

}

*

Remember, there is no difference
functionality wise between
readButton2 and readButton3

for this given context. There

are characteristics listed in the
table which may actually make a
big difference in some cases, but
for reading and storing button
data, there is no difference.

Though, some people prefer pass
by reference so you don't have to
write a "->" in place of the "."
for every method call.

¥ X K K XK X X X K XK X X X ¥ N

*
~

12

3.3. Display Optimization

In principle, a display like the ILI-9341 TFT can give the illusion of a moving image
by simply displaying a thing, removing that thing, and very quickly displaying
another thing. Imagine that the thing we wanted to display is a variable that changes
as a parameter or sensor changes over time. Naively, we can implement something
akin to the following pseudocode:

void loop() {
print the value on the screen
clear the screen

}

Depending on how clear the screen is implemented, this can be very inefficient. The
small SD1306 displays that Steve probably has you use will struggle in performance if
they were given an implementation of the above, since the clearDisplay() function in
the Adafruit SSD1306 library will iteratively set every single pixel to black on the
screen. This is especially important for dealing with larger multicolor displays. We
can address this by modifying the pseudocode above to only clear the values that are
changing:
void loop() {

if(a value has changed) {

print the value to the screen
clear only the value that has changed

}
}

3.3.1. Implementation

An implementation that I incorporated to this project using the Adafruit GFX library
and the Adafruit ILI-9341 TFT Display involves two functions: display() and
clear(). The code below assumes we have the following structures, but you do not
need to organize your code in such a manner.

struct BUTTON { struct POT {
int pin; int pin;
String name; String name;
bool prev state; int prev_val;
bool state; int val;

b b

void display(Adafruit ILI9341& display, String value, int x, int vy,
int fColor, int bColor) {

display.setCursor(x, y);
display.setTextColor(fColor, bColor);
display.print(value);

}

void clear(Adafruit ILI9341& display, String value, int x, int y) {
display.setCursor(x, y);
display.setTextColor(ILI9341 BLACK, ILI9341 BLACK);
display.print(0xDA); // a black square, clears one character

}

13

This lets us write the following functions that let us print Strings with a fast refresh
rate to the display:

void printButton(Adafruit ILI9341& display, BUTTON& b, int x, int vy,
int fColor, int bColor, int debug = true) {
if(b.prev_state != b.state) { // print only when the value is different
String toPrint = b.name + ": " + b.value;
clear(display, toPrint, x, y);
display(display, toPrint, x, y, fColor, bColor);
}
if(debug) {
Serial.println(b.name);
Serial.println(b.state);
}
}

void printPots(Adafruit ILI9341& display, POT& p, int x, int vy,
int fColor, int bColor, int debug = true) {
if(p.prev_val != p.val) { // print only when the value is different
String toPrint = p.name + ": " + p.value;
clear(display, toPrint, x, y);
display(display, toPrint, x, y, fColor, bColor);
}
if(debug) {
Serial.println(p.name);
Serial.println(p.value);
}
}

In a loop() function:

BUTTON b = {3, "Button", false, false}; // pin, name, prev state, state
Adafruit ILI9341 display;

void setup() {
pinMode(b.pin, INPUT PULLUP);
display.begin();

}

void loop() {
readButton(b); // we assume this reads and stores a button's value
printButton(display, b, 100, 100, ILI9341 RED, ILI9341 BLACK);

}

3.3.2. Using millis()

Another way you can implement a high refresh rate is by using millis(), where
instead of relying on the internal clock speed of the Teensy’s CPU, we can
standardize the rate at which we clear and print to the screen based on a predefined
frame rate:

#define FRAME RATE 30
unsigned long lastFrame = 0;

14

BUTTON b = {3, "Button", false, false}; // pin, name, prev state, state

void loop() {
readButton(b); // digitalRead() + storing in button struct
if(millis() > lastFrame + FRAME RATE) {
lastFrame = millis();
printButton(b, 100, 100, ILI9341 RED, ILI9341 BLACK);
}
}

However I have found that with a lot of information on the screen (displaying rapidly
changing values) all methods mentioned above exhibit performance issues. A
potential solution is highlighted below for anybody who needs to efficiently print 12+
rapidly changing parameters in real time onto a display.

3.3.3. Framebuffers

Future iterations of the project plan on implementing a frame buffer®. Frame buffers
acknowledge the fact that there is both a CPU and time cost that must be paid when
rendering an image onto a display. So they stockpile pixel information inside of an
array (or some other data structure) to pay this CPU and time cost once in bulk.
Typically two or three frame buffers are used in tandem so when one frame buffer is
displaying information, we can write pixels to another frame buffer and hide the bulk
CPU and time cost behind an image that is already being displayed. If you wish to
implement a frame buffer on your own, the pseudocode is outlined below:

framebuffer()
input: 2 arrays / framebuffers, T time units, information to write
goal: print to screen efficiently.

repeat:
1. write information to framebuffer (array)
2. wait for hardware to draw framebuffer
3. swap and repeat steps 1 & 2 with the other framebuffer

Frame buffers are incredibly efficient and are the backbone to modern display drivers
that regularly appear in flatscreen televisions, high-refresh rate gaming monitors, and
touchscreens for mobile devices. As it turns out, we can also optimize this even
further with differential updates. Instead of uploading a display-sized array to the
display driver or graphics card, we only upload the pixels that have changed;
ultimately reducing the memory overhead on a computationally intensive task for a
microcontroller.

*This is also because Adafruit’s Adafruit ILI9341 display firmware does not come with a
framebuffer built-in. It probably does not matter, but it is an optimization I'm interested and
excited about because it allows for cooler stuff to be displayed at a smaller cost.

15

3.4. Object Oriented Design

Note that this following section has not been implemented in the source code on
GitHub. Additionally, the system I propose in this section requires some C++
programming context (which will be outlined in the following section.

3.4.1. Overview

The beauty and detriment that of C4++ and Object Oriented Programming lies
within objects and cryptic error messages. The software side of this project involves a
data processing environment that aims to allow the user to process and control the
data in interesting ways such that the output can deviate from raw sensor data.

C++ is an object oriented programming language, which means the user can create
their own datatypes that contain functions and variables that are distinct to said
datatype. An interesting property of Object Oriented Programming is the principle of
inheritance®, where we can create datatypes using a previous datatype. For example,
consider the Scale class below:

class scale {
public:
scale(std::vector<int> notes);
~scale();
virtual void arpeggio(); // because it is virtual, we must implement it.
int play(int scale degree);
int playMelody(int melody[], int rhythms[]);
void transpose(int i);
protected: // this isn't private for a reason discussed later
std::vector<int> notes;

};

It’s an incredibly rudimentary scale class that stores some MIDI notes defined by the
user and plays a given scale degree. However, if we wish to create a CMajor or DMajor,
we can use this scale class as a framework so we do not need to write each function
and variable again.

class cMajor : public scale

{
public:
cMajor() : scale({notes to cmajor}) {}
~cMajor();
// we write override to let C++ know that this is the version of the
// function to use. Otherwise, C++ would have to pick between the
// parent object (scale)'s methods or the child object (cMajor)'s
// methods to use.
void arpeggio() override; // don't need override here, but compiler likes it
int play(int scale degree) override;
int playMelody(int melody[], int rhythms[]) override;
void transpose(int i) override;
b

bsee this link for more information

16

https://www.geeksforgeeks.org/cpp/what-is-inheritance-1/

This principle is used quite a bit for the example I propose below.

3.4.2. Design
My Product Design system roughly works in the following flowchart:

Y
Y

User Input Data Processing Output

Although I plan on adding extra features (see Planned Features), for simplicity’s
sake, we can assume the following system for the “Data Processing”:

Each parameter that the Teensy can read values to store in a variable must have a
behavior, a set of rules that the parameter will follow. If we zoom into the Data
Processing field from the flowchart above, this would give us the following:

MIDI
Raw Sensor Data > Moving Average Filter > Behavior > CV
etc.
Parameter
. Modifers .

3.4.2.1. Parameter Class

Note that when each parameter gets read by the Teensy, it also gets smoothed to
remove any analog noise. This is why the “Moving Average Filter” step exists. You
can think of the italicized boxes as apart of a “Parameter” that the user can interact
with. In code, this means we can view each parameter as the following:

// quickly abstracting pins for convenience:
typedef struct device pin {

String name;

int pin;
} device pin;

// enums for easily reading and labeling parameters
enum class PARAM TYPE {

POT,

BUTTON,

GYRO,

MISC

};

// mostly abstract base class. This is similar to Interfaces in Java.
// That is also why we do not have a constructor or destructor here.
class base param
{

virtual bool begin(); // intialize parameter

virtual void read(); // read raw value

virtual void debug(); // enable serial printing

17

virtual void process(); // smooth raw value

}

// base parameter class of typename N

template <typename N>

class param : public base param

{

public:
param() = default;
param(String n, struct device pin p) : pin(p), name(n) {}
param();

bool begin() override;

void read() override;

void process() override;

void debug(bool s, bool d) override;

// getters and setters

N get val();

N get raw val();

device pin* get device pin();
String get pin name();

String get name();

void set name(String n);

void set pin name(String n);

void set pin(int p);

void set pin struct(device pin p);

protected:
String name;
device pin pin;
N processed value; // after smoothing
N prev _raw val; // previous value
N raw_val; // raw value

}

// example use with a button
class button : public param<bool>
{
public:
button() : param<bool>("untitled button", {"nonexistent pin", -1}) {}
button(int pin, String pin_name, String param_name)
param<bool>(param name, {pin_name, pin}) {}
bool begin() override;
void debug(bool serial, bool display) override;
void read() override;
void process() override;
PARAM TYPE get param type() {
return type;

}

private:

PARAM TYPE type;
};

3.4.2.2. Behavior Class

Because behaviors can potentially get quite involved, I we abstract their logic into a
separate object. So then we can imagine a setup like the following:

// mostly abstract base class.
template <typename IN, typename OUT>
class base behavior
{
public:

base behavior() = default;

~base behavior() = default;

virtual OUT process(const IN& input); // for any values we may have to pass
into it

String get name();
protected:

PARAM TYPE type;

int id;

String name;

};

// example probablistic button behavior
template <typename N>
class probs behavior : public base behavior<bool, N>

{

public:
probs behavior() = default;
~probs behavior() = default;
N process(const bool& input) {

return probs[(index + 1) % 10];

}

private:
int index;

N probs[10]; // if we wanted to have this be variable size, use
std::vector<N>

};

3.4.2.3. Wrapper Class and Application

We currently have two disjoint objects that are important to this system, but we
would probably like to have their functionalities together in one spot so we do not
need to call methods from multiple objects to achieve one goal. Thus, we can create a
wrapper object that combines the two together:

template <typename IN, typename OUT>
class parameter wrapper

19

{
public:
parameter wrapper() = default;
parameter wrapper(param<IN> p, base behavior<IN, OUT>& b)
param(p), behavior(b) {}
~parameter_wrapper();

// may need a little more than this, but I think this gets the idea across
OUT process(const IN& input) {

param.read();

return behavior.process();

}

// other methods like getter and setters are hidden.

private:
base behavior<IN, OUT> behavior;
param<IN> param;

};
In the Arduino IDE:

#include "behavior.h"

#include "parameter.h"
#include "parameter wrapper.h"
// ... other libraries

button button(3, "button pin", "test button");
probs behavior<int> probs;
parameter wrapper button wrapper;

void setup() {
button wrapper(button, probs);
}

void loop() {
Serial.println(button wrapper.process());

}

There could be other extensions to this system, such as including multiple behaviors,
or including “modifiers” that could lightly modify values as they enter a behavior, or
including “modulators” that change behaviors or modifiers over time, or allowing the
wrapper objects create parameter and behavior objects themselves, but I believe that
for the sake of demonstration, the system above is simple enough to understand the
idea that I intend to convey for the “data processing” box. There is an additional
GUI system that also has to be constructed for the user to interact with, but I
haven’t had any idea as to how that would look like.

3.5. The Printed Circuit Board & Physical Components

The PCB was inspired by Mason Mann’s less rigid designs that he has used in his
various selfmade audio electronics projects. As my first printed circuit board, I think

20

it turned out well, if “turned out well” translates to properly alinging traces, ensuring
every part has a correct footprint, and that every component can properly interface
with the Teensy. The number of headaches that have been associated with
the design of this circuit board do not outweigh the aesthetic chaos that
comes with the board. It is subsequently obvious from my personal experience
developing this board that I strongly discourage any designs similar to the liberties
that I took.

This anecdote centers around the Hall Effect joysticks I bought from Aliexpress and
its inability to print sensor information. There is an interesting pendulum that swings
back and forth in regards to the parts that this prototype needs. On one hand, parts
can be readily available for cheap on websites such as Mouser, Adafruit.com, Digikey,
or Aliexpress. However, in choosing locations such as Aliexpress to source parts from,
it becomes rather difficult to source proper datasheets for certain products. There
was an issue I encountered with a hall effect joystick that did not print data to Serial
even aftewr being properly wired. After investigating the power trace on my PCB I
noticed it was connected to the 5v pin isntead of the 3.3v pin most components are
designed to take. After rewiring the power wire,the hall effect joystick in question still
was not able to print values out to Serial.

Additionally, in the design like this, I found that more of my attention was taken
away from ensuring that the PCB itself was properly put together (since I also
accidentally flipped the display’s footprint, leading to another headache resoldering
wires to the proper pins. Had the PCB been a little bit more neat, there would most
certainly be a clearer procedure to refer to when troubleshooting potential causes.

3.6. The Ambitious NYU Student

It’s likely that because you are reading this part of the report you’re just as

interested in audio hardware, software, or audio embedded systems as I am. If I were

to guess, you are also probably looking for anybody or anything that will satisfy this
thirst of knowledge, an interest for the design patterns and theory through the lens of
art. There’s already a lot to take away from this giant word vomit, but it’s also
important to acknowledge the following:

1. It’s likely that if you are interested in taking the Product Design class, you have
no idea where to begin in terms of fabrication and enclosure design. Do not
make more work for yourself if this is the case.

2. It’s very normal to make compromises in this class. I had to make a lot of
compromises throughout the semester because in addition to the Product Design
class, I took Basic Algorithms and Operating Systems, the notorious weeder
classes in the Courant Computer Science department.

3. It’s not fair to compare yourself to others in this class. See the second
point. If the first point also applies to you, there is no reason for comparisons or
an unending amount of anxiety that you are falling behind. Lower the bar, nurture
your ideas and the soul. They will all come eventually. Having gone through this
semester, I don’t think it is worth the added stress of getting everything done at

21

once compared to the amount of sleep and caffeine that you will lose (at least from
my experience)

If it’s not clear yet, be sure to set your bar lower than you’d think. Not for the
sake of putting you down, rather for the sake of your mental health and sleep
schedule, unless you really know what you're doing.

4. Fabrication

4.1. Design Goals for Future Prototypes:

My product will functionally look similar to handheld gaming consoles, namely the
Nintendo Switch, the Wii-U, and the Steam Deck, shown below. Future iterations on
this project involve on 3D printing an enclosure (smaller than my current breadboard
layout)

to ensure that the device maintains a small formfactor and is handheld. I might need
to include additional 3D printed components (for the DPAD, or a custom joystick
footprint).

Figure 2: The Nintendo Wii-U

22

4.2. Inspirations
My product takes inspiration from the Y2K “translucent tech” design, and the
transparent yet minimal asthetic from tech companies like Nothing and Teenage

Engineering.

Figure 3: The Nothing Ear 2 (left) and Nothing Ear 3 (right) wireless earbuds

Figure 4: The Nothing 3a Pro phone lineup

23

ARl %
L,LLL" “' i IS

BoE &uuggugggggg&u|

LL&. o0 | o0 | 90e

eecRANARRRRRRRND

Figure 5: The Teenage Engineering TX-6 and OP-1

Figure 6: Y2K translucent style tech products. the Apple iMac G3 (left), Nintendo
GameBoy (middle), and Nintendo GameCube (right)

24

4.3. Rough Sketch

Triggers

Trigger buttons

R Joystick

Side View

2°Q 00O P F)

¢V Out

Teensy USB potentially more ports here

Figure 7: rough sketch of my game controller

25

5. Planned Features

There are a plethora of features that I plan on adding in the future. Below is an

incomplete list:

[] Better documentation of sourced parts

(] Code Refactoring for better Object-Oriented Design

(J Menu / GUI Infrastructure

Il Asynchronous analogRead() using enableInterrupts() and disableInterrupts()
from the Teensy ADC class.

(] FrameBuffer display implementation

() Bluetooth Support

(] Lithium-ion battery power supply option

(] PlatformIO migration

(] tinyUSB stack implementation for thorough USB-Compositing

() XInput Option via tinyUSB.

Modular-based Data Processing Firmware Design:
(] Behaviors

e Allows the user to set the ways in which a parameter behaves. One per
parameter, per output must be allowed.

o For instance, a button can be a simple toggle switch (on/off), trigger a random
value upon button press, cycle through an array of values, probablistically
trigger a set of values, etc.

e Similarly, potentiometers can also simply display the X and Y values, a polar
coordinate, or a logical computation between the two (print X if X>Y, Y
otherwise), etc.

e Far-fetched behaviors:

» physics simulations (each bounce of a marble in a container is an output of
some kind)

» time-stretching (ie the incoming values for a parameter will be slower by a
given factor)

» logic gates (ie a button will only output a value v if conditions A and B are
met. If we assume condition A is when the button is pressed and condition B
when the gyroscope detects very little movement, we can easily create very
dynamic conditionals for data to be sent.)

(] Modifiers

o Allows the user to fine-tune the parameter’s pre-behavior / post-behavior values
to their liking. Aggregates in a tree data structure.

o for instance, a button can obtain the behavior to send values a, b, or ¢ as an
output value. The user can set what each value is, and whether or not he
wishes to bias an output (ie introduce a coefficient that will be summed or
multiplied with the output), slew the output (if a was sent out first and b is the
next value, we interpolate between the two discrete values), or invert the
output.

26

o similarly, a potentiometer can obtain the behavior to send the polar coordinates

of its respective z and y potentiometers. It can decide the smoothing value, bias

the outputs using some mathematical function, or feed the outputs into a

separate function of its own (ie if z and y are phase or frequency parameters for

a Lissajous figure, and the output of the function is the phase or frequency

relationships of the two)
() Modulators

o additional functions that control different modifiers / behaviors

(in the scenario of the button above, if we had a way to deterministically change

which values a, b, ¢ were being outputted in addition to the button trigger, or a

way to modify a, b, ¢ by some amount)

e audio thru modulator that lets the user control parameter behaviors

with audio (a button press gets frequency modulated with a incoming audio

signal)

6. Materials List
6.1. Hardware

searching for Hall Effect Axis
Resistor

Component Notes Count | Price
Full size Breadboard for prototyping, can be from 2 $11.9
any vendor.
These can be replaced with hall
effect sensors as mentioend
Analog 2-axis Thumb Joystick ab.ove. The ones 1 got ﬁnom
with Select Button Aliexpress were from looking 2 $11.9
up “hall effect joystick” and
picking one that wasn’t
expensive
These are the ones I ended up
Soft tactile push buttons (20pk) | using but any push button will |1 $2.50
do
MCP4728 4-channel DAC recommended by Steve 1 $7.50
LSM6DSOX Gyroscope probably overkill but any 1 $11.95
gyroscope can work
PJRC Teensy 4.1 Microcontroller of choice 1 $29.60
Act as triggers, can be buttons
need be. You can also find
10k Breadboard Trim Pot these on Aliexpress by 2 $2.50

27

https://www.adafruit.com/product/239
https://www.adafruit.com/product/512
https://www.adafruit.com/product/512
https://www.adafruit.com/product/4183
https://www.adafruit.com/product/4470
https://www.adafruit.com/product/4438
https://www.pjrc.com/store/teensy41.html
https://www.adafruit.com/product/356

Component Notes Count | Price

Any 2.2” TFT display should

2.2” 18-bit color TE'T display work, doesn’t necessarily need 1 $24.95

to be from Adafruit.

6.2. Software

Library

Notes

Adafruit 1119341

Adafruit driver library for the 1L19341 display.

Adafruit MCP4728

Adafruit driver library for the MCP4728 DAC.

Adafruit LSM6DSOX

Adafruit driver library for the LSM6DSOX.

Keyboard.h PJRC Keyboard library

usb midi.h USB MIDI PJRC library

Wire.h Dependency for adafruit libraries
SPI.h Dependency for adafruit libraries

Adafruit GFX Library

GFX library used during most of prototyping.

1110341 T4

Requires manual installation. Framebuffer
optimized for Teensy 4.1 and 1119341 TFT
displays. Use this if you intend on using
the tgx graphics library. Never fully
implemented. Remove the Adafruit
ILI9341 driver if you plan on using this
one.

tgx, a tiny 2D /3D graphics library

Requires manual installation. Graphics
library optimized for 11.19341 TF'T displays.
Can display simple shapes, curves, images,
animations, and 3D shapes. Never fully
implemented.

ResponsiveAnalogRead

OPTIONAL, if you do not want to
implement asynchronous analog reads, or if you
do not care about this micro-optimization.

Adafruit GFX Buffer

OPTIONAL; requires the Adafruit-
ILI9341 driver, if you want a framebuffer for
the Adafruit GFX library.

Arduino XInput

XInput library for microcontrollers like the
PJRC Teensy 4.1, for later implementation.
Emulates Xbox 360 communication protocol.
Requires the installation of the following

28

https://www.adafruit.com/product/1480
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit_MCP4728
https://github.com/adafruit/Adafruit_LSM6DS
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/vindar/ILI9341_T4
https://github.com/vindar/tgx
https://github.com/dxinteractive/ResponsiveAnalogRead
https://github.com/vjmuzik/Adafruit_GFX_Buffer
https://github.com/dmadison/ArduinoXInput?tab=readme-ov-file
https://github.com/dmadison/ArduinoXInput_AVR

	1. Overview
	2. User Interface
	3. Challenges
	3.1. Composite USB Devices
	3.1.1. Steps
	3.1.2. Final boards.txt Modification
	3.1.3. Alternative: tinyUSB

	3.2. Passing Function Arguments
	3.2.1. Example

	3.3. Display Optimization
	3.3.1. Implementation
	3.3.2. Using millis()
	3.3.3. Framebuffers

	3.4. Object Oriented Design
	3.4.1. Overview
	3.4.2. Design
	3.4.2.1. Parameter Class
	3.4.2.2. Behavior Class
	3.4.2.3. Wrapper Class and Application

	3.5. The Printed Circuit Board & Physical Components
	3.6. The Ambitious NYU Student

	4. Fabrication
	4.1. Design Goals for Future Prototypes:
	4.2. Inspirations
	4.3. Rough Sketch

	5. Planned Features
	6. Materials List
	6.1. Hardware
	6.2. Software

